MINNESOTA SCHOOL OF BUSNESS GLOBE COLLEGE TECHNICAL COURSE SYLLABUS

COURSE NUMBER:	SD251	COURSE TITLE:	C++ PROGRAMMING
COURSE LENGTH:	12 WEEKS	CREDIT HOURS:	4
PREREQUISITES:	SD230	CONTACT HOURS:	60 (LECTURE 20 / LAB 40)

C++: HOW TO PROGRAM, 3RD Edition, H. M. Deitel & P.J. Deitel, Prentice Hall TEXT: **IBSN:** 0-13-089571-7

SUPPLEMENTAL

TEXTS: AN NTRODUCTION TO PROGRAMMING WITH C++, Diane Zak OBJECT-ORIENTED PROGRAMMING USING C++, Joyce Farrell

COURSE DESCRIPTION: This course will introduce the student to the C++ programming language. This course will build on what has been learned in C Programming, show how C++ expands on C, demonstrate the object-oriented features of C++, and cover many of the new features that C++ offers.

OBJECTIVES: Upon completion of this course, the student will be able to:

- 1. Identify the improvements on the C language.
- 2. Describe the additional data types.
- Apply new operators and operator overloading.
- 4. Explain the additional capabilities of functions, such as overloading and inlines.
- 5. Describe the elements of object-oriented programming.
- 6. Declare, define and instantiate a class.
- 7. Create class constructors and destructors.
- 8. Explain public and private inheritance.
- 9. Determine when to use virtual functions.
- 10. Use the iostreamlibrary.
- 11. Recognize and use functions and class templates.

COURSE OUTLINE:

Topics & Class Activities		Required Reading
<u>Week 1</u>	Introduction to computers and Control Structures	Chapter 1,2
<u>Week 2</u>	Functions and Arrays	Chapters 3, 4
<u>Week 3</u>	Pointers and Strings	Chapter 5
<u>Week 4</u> :	Classes an Data Abstraction	Chapter 6

7/1/03

	Topics & Class Activities	MASTER SYLLABI Required Reading
<u>Week 5</u>	Classes: Part II	Chapter 7
<u>Week 6</u>	Review / Midterm	
<u>Week 7</u>	Operator Overloading	Chapter 8 Project #1 Due
<u>Week 8</u>	Inheritance	Chapter 9 Project #2 Assigned
<u>Week 9</u>	Virtual Functions & Polymorphism	Chapter 10
<u>Week 10</u>	Stream I/O	Chapter 11
<u>Week 11</u>	Templates	Chapter 12
<u>Week 12</u>	Final Exam	Project #2 Due

INSTRUCTIONAL METHODS: The student will need access to a C++ compiler toolset. This course is intended to be platform-neutral; either Windows or Linux may be used to create the programs required for this course. **t** is recommended that the GNU gcc compiler be used. This is the native compiler for Linux and is part of the Cygw in tools provided by Cygnus Solutions, a Red Hat company. It is recommended that students be provided a CD-ROM available with the Cygw in package, as the current dow nload is about 13 MB. Visual C++ or Borland C++ may be alternatives. Understand that C++ is a new er language than C and the various C++ compilers may not yet support all that is specified in the ANS/ISO Draft Standard. Some of these lessons could take more than a w eek. Some lessons are shorter than others to provide extra time for review and discussion. In addition to performing a few exercises found w ithin each chapter, two programming projects w ill be assigned.

EVALUATION: Student grades will be based on the following assignments and points:

Exercises:	200
Projects (2):	300
Midterm:	200
Final:	200
Participation:	<u>100</u>
-	1,000 points total

The final grade for the course is based on an accumulation of points in each of the above areas and weighted accordingly. A total of 1000 points are possible. These points are based on the following percentages:

100-90%	А
89-80%	В
79-70%	С
69-60%	D
59% and low er	N/C