MASTER SYLLABI

COURSE LENGTH: 12 WEEKS PREREQUISITES: SD110

CREDT HOURS: 4
CONTACT HOURS: 60 (LECTURE 20 / LAB 40)

TEXT: C: HOW TO PROGRAM $3^{\text {RD }}$ Edition, H. M. Deitel \& P.J. Deitel, Prentice Hall IBSN: 0-13-089572-5

COURSE DESCRIPTION This course introduces the student to the C programming language. Students will apply their knowledge of programming logic, analyze problems and construct solutions using source code in C. They will also test, debug and modify source code. Also, students w ill prepare to leam advanced languages, such as C++ or Java.

OBJECTIVES: Upon completion of this course the students w ill be able to:

1. Define good coding habits, by applying principles of structured programming to the Clanguage.
2. Explain and apply the preprocessor, compiler and linker for C .
3. Identify, describe and apply the basic (primitive) data types in C.
4. Describe and apply operators, expressions and rules of precedence.
5. Identify, explain and apply the C language implementations of control structures (sequences, decisions, loops, etc.)
6. Identify, explain and apply both single and multi-dimensional arrays.
7. Identify, explain and apply pointers.
8. Identify and apply modularity in C using functions.
9. Create and apply structures, unions and enumerations.
10. Apply formatted input/output.
11. Apply basic file input/output.
12. Build multifile programs.
13. Apply and use various Clibrary functions.

COURSE OUTLINE:

Topics \& Class Activities

Required Reading

Week 1:	Brief review of basic computing concepts; Intro to C as a language; Includes basic arithmetic \& relational operators.	C: How to Program
	Chpt 1-2	

Week 2: \quad Begin with review of programming structures from SD110 Computer Programming Logic.
Focus on how to implement those in C syntax (if/else, while)

Week 3: Review control structures from: SD110 Computer Programming Logic, and implement additional control structures (do/w hile, for, sw itch, break, continue)

C: How to Program
Chpt 1-2

C: How to Program Chpt 3

C: How to Program Chpt 4

SD230

7/1/04

Topics \& Class Activities

Week 4 \& 5: \quad f functions \& modularity
 Random numbers
 Recursion
 Promotion of data types
 Definitions \& prototypes, etc.
 Call by Value
 Arrays

Week 6: MIDTERM
Review \& Test

Week 7:	Pointers	C: How to Program
	$\mathbb{\&}^{*}$ and \pm operators for pointers	Chpt 7
Call by reference		
	Bubble sort	
	Pointer arithmetic	
	Pointers $\&$ arrays	

Week 8: \quad Characters \& strings in C
Fundamental operations for strings \& characters
String conversion functions
Standard i/o library functions, etc.

Week 9: Formatted input/output, streams, etc,

Bitwise operations
Typedef

Week 11: File input/output
Preprocessor directives
Conditional compilation
Multi-file programs
Macros

C: How to Program Chpt 9

C: How to Program Chpt 10
C: How to Program Chpt 8

C: How to Program Chpt 11, 13
\& Selected Topics in Chpt 14

Week 12: Final Exam

MASTER SYLLABI

INSTRUCTIONAL METHODS: The student w ill need access to a C compler toolset. This course is intended to be platform-neutral; either Windows or Linux may be used to create the programs required for this course. \mathbf{t} is recommended that the GNU gcc compiler be used. This is the native compler for Linux and is part of the Cygw in tools provided by Cygnus Solutions, a Red Hat company. It is recommended that students be provided a CD-ROM available w ith the Cygw in package, as the current dow nload is about 13 MB .

Each lesson is intended to take about a w eek Some lessons are shorter than others to provide extra time for review and discussion. In addition, to performing a few exercises at the end of each chapter, tw o programming projects will be assigned.

EVALUATION: Student grades will be based on the follow ing point scale:

Exercises	200
Projects (2)	300
Midterm Exam	200
Final Exam	200
Participation	$\underline{100}$
	1,000

The final grade for the course is based on an accumulation of points in each of the above areas and weighted accordingly. A total of 1000 points are possible and grades are based on the follow ing percentages:

$100-90 \%$	A	
$89-80 \%$	B	
$79-70 \%$	C	
$69-60 \%$	D	
59% and low er	N/C	

